PGCONF.US NYC 2025

Mastering Time-Series Data in PostgreSQ ‘
Advanced Partitioning Strategies and “

BRIN Indexes to Speed Up Ingestion

Domenico di Salvia (he/him)

Sr. WW SSA PostgreSQL, EMEA
Amazon Web Services

Agenda

The problem

The nature of time-series data
Benchmark scenario
Improving with:

 ..theright data types
« ..theright indexes
 ...partitioning

Q&A

aws

N

What's the problem here?

Key Challenges: Common Scenarios:

 High write throughput |oT sensor data

* Query performance Financial market data

* Storage efficiency Application performance metrics
« Maintenance overhead Log aggregation systems

Monitoring systems

5 © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserve.

Single Table Problem

Performance Impact:

sensor data (« Index Bloat
timestamp
sensor id Vacuum operations
G Query planning
metadata

Backup/restore

5 © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The nature of time-series data

Few key characteristics:

. Treated as an immutable
append-only log

. Datais inserted in time
order

Benchmark scenario

The benchmark simulates a fictional company that tracks metrics on its fleet of
trucks.

To simulate the ingestion of the metrics, the benchmark loads pre-generated
data using the PostgreSQL COPY command in parallel threads.

Approximately 1 Year of Data
100 Trucks
586 million rows of data

Data size of about 133GB

Credits: https://qgithub.com/timescale/tsbs

https://github.com/timescale/tsbs

Benchmark scenario continued

readings (readings latitude time 1idx
time readings
tags id btree (latitude, time)
name
latitude readings tags i1d time 1dx
longitude readings
elevation btree (tags id, time) e
velocity
heading readings time idx

grade readings

fuel consumption btree (time) ;

additional tags

aws
~—

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Benchmark scenario continued

relname pg size pretty
diagnostics 22226821120
diagnostics fuel state time_idx 15525781504
diagnostics_tags id_time_idx 16172163072
diagnostics_time_idx 129889597632
readings 34228625408
readings_latitude_time_idx 12058607616
readings_tags id_time_ idx 16003366912
readings_time_idx 12963602432
tags 60825600
tags _id _seq 8192
tags _name_idx 22192128
tags pkey 14811136

aws
~—

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

First Ingestion Trial Results

Amazon RDS for PostgreSQL db.r6g.2xlarge (Graviton2, 8 vCPU, 64 GiB
memory)

Storage type io1 with 20k provisioned IOPS
» 4 parallel workers loading data (COPY)
Results:
« Load Time = 5,609 seconds (93.5 minutes)

« At arate of 522,832 metrics per second

aws

N

...by using the right Data Types

e ID column = SMALLINT? ...maybe better INT (up to 2 billion of values)
e Metrics columns = from DOUBLE PRECISION to REAL

readings
elevation
velocity
heading
grade .
fuel consumption

Second Ingestion Trial

» Size of the database goes from 133GB to 126GB (-5.2%)
» Less storage and likely less CPU cycles needed

* More rows can be held in memory

Results:
« Load Time = 5,487 seconds (about 91 minutes)

« At arate of 534,517 metrics per second

aws
~—

And even the order of the columns does matter...

Group columns with similar data types together (integer, text, blob, ...)
Put the fixed size columns first
Put the most frequently used columns first

Don’t use VARCHAR if you can make better choices (e.g., CHAR, INT, DATE,
TIMESTAMP, ...)

Benefits:
» Less disk space

* Better performances
* CPU and RAM used efficiently

Credits: Hans-Jirgen Schonig (PGConf.EU Berlin 2022)
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/

aws
N

2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/

...by using the right Index Types

B-Tree (default index type)

Hash

GiST (Generalized Search Tree)
SP-GIiST (Space Partitioned GiST index)
GIN (Generalized Inverted Index)

BRIN (Block Range Index) > perfect for timeseries data...

bloom (extension)

BRIN (Block Range Index)

It stores Min/Max values for a range
of data pages

Uses less storage (order of magnitude) 51-100 ~
101-150

Tiny index designed to index large tables

Supports equality and range queries,
supported operators: < <= =>=>

Ideal for natural ordered table, examples:

e timestamps

readings time brin idx
 |oT sensor data readings
(time)
(pages per range = 32);

5 © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Third Ingestion Trial

» Size of the database goes from 126GB to 101GB (-19.8%)
* The size of both BRIN indexes are only 24 KB in this scenario...

* ...Mmeaning better performance for metrics ingestion

Results:
« Load Time = 4,761 seconds (about 79 minutes)

« At arate of 616,002 metrics per second

aws
> © 2025, Ama

But, what about read performances with BRIN?

Aggregate (cost=43256.51..43256.52 rows=1 width=8)
(actual time=222.670..222.671 rows=1 loops=1)
Index Only Scan using readings_time_idx on readings
time (cost=0.57..41335.85 rows=768264 width=0)
(actual time=0.024..174.810 rows=777456 loops=1)
Index Cond: (("time" >= '2020-12-25 00:00:00+00'::timestamp with
time zone) AND ("time" <= '2020-12-26
00:00:00+00'::timestamp with time zone))
Heap Fetches: 777456
Planning Time: 0.079 ms
Execution Time: 222.701 ms

count (*)
readings

(6 rows)

5 © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

But, what about read performances with BRIN?

Aggregate (cost=6054759.35..6054759.36 rows=1 width=8)
(actual time=176.459..176.460 rows=1 loops=1)
count (*) > Bitmap Heap Scan on readings
readings (cost=1824.41..6052838.72 rows=768252 width=0)
time (actual time=18.612..129.882 rows=777456 loops=1)

Recheck Cond: (("time" >= '2020-12-25 00:00:00+00'::timestamp with
time zone) AND ("time" <= '2020-12-26 00:00:00+00'::timestamp
with time zone))

Rows Removed by Index Recheck: 19762

Heap Blocks: lossy=9728

-> Bitmap Index Scan on readings_time_brin_idx

(cost=0.00..1632.34 rows=768329 width=0)
(actual time=18.540..18.540 rows=97280 loops=1)

Index Cond: (("time" >= '2020-12-25 00:00:00+00'::timestamp
with time zone) AND ("time" <= '2020-12-26 00:00:00+00'::timestamp
with time zone))

Planning Time: 0.080 ms
Execution Time: 176.494 ms
aws

5 © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Additional considerations

Metric Ingestion (Reals + BRIN)

400000
200000

0

aws

5 © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

...by implementing Partitioning

Declarative Partitioning introduced in PostgreSQL version 10

Benefits:
Divide & Conquer
Partition Pruning
Parallel Maintenance and Data Retrieval

Efficient Data Lifecycle

Partitioning Strategies

Range Partitioning

Data is placed in partitions based on a range of values = perfect for timeseries data...

List Partitioning

Data is placed in partitions based on a list of discrete values

Hash Partitioning

Data is placed in partitions based on a hash algorithm applied to a key

5 © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Range Partitioning

Not all partitions need to be sensor data (
defined timestamp s
sensor 1d

value ,

metadata)
The special values MINVALUE (timestamp) ;
and MAXVALUE can be used to
indicate that there is no lower
or upper bound

Can not have overlapping
ranges

sensor data y2025m09
sensor data

The value can not be NULL

5 © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Range Partitioning continued

Interval Use Case Pros Cons
Daily High-volume loT Fine-grained pruning Many partitions
Weekly Moderate volume Balanced approach Less granular

Monthly Lower volume Fewer partitions Larger partitions

pg_partman - https://qithub.com

pg_cron - https: ithub.com/citusdata cron

aws
~—

https://github.com/pgpartman/pg_partman
https://github.com/pgpartman/pg_partman
https://github.com/citusdata/pg_cron
https://github.com/citusdata/pg_cron

Fourth Ingestion Trial

* Size of the database is the same (101GB)

Results:
e Load Time = 1,774 seconds (about 29 minutes, -62.7%)

At arate of 1,653,024 metrics per second

Results Summary

Metric Ingestion

1,800,000
1,600,000
1,400,000
1,200,000
1,000,000

800,000

600,000

©
O
o
Q
")
—
Q
Q.
v
O

-
R
Q
e
-

400,000
200,000

0
Original + Optimized Data + BRIN + Partitioning
Types

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Results Summary (continue

Metric Ingestion
1800000
1600000
1400000 Ingestion complete
1200000
1000000
AR Ingestion complete
600000
400000
200000

0

== Single Table Partitions

5 © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Results Summary (continued)

TSBS - Data Ingestion - Native Partitioned tables vs Single tables

300,000

250,000

T
=
o
]
)]
wv)
E
)]
Q.
©
[J]
e
7]
()
7]
£
)
3
o
gb
<

aws
~—

150,000

/ 257,999

— 252,999

/ 228,500 / 228,889

Finished
after 820
secs.

198,062
200,000 1= /

/ 155,528

100,000

20,
/), 000, 000 Y 000 %
0o

Total Rows Inserted

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

227,679

104,949

/

o Finished
after

1784
secs.

4 workers, ingesting bataches of 10,000 each
instance: db.r6g.4xlarge / 20K iol

Avg. Rows Ingested Per Second -
Single

Avg. Rows Ingested Per Second -
Partitioned

—— Linear (Avg. Rows Ingested Per
Second - Single)

——Linear (Avg. Rows Ingested Per
Second - Partitioned)

Results Summary (continued

TSBS - Data Ingestion - Native Partitioned tables vs Single tables
(less 1 index)

350,000

. after each
/ 575 instance: db.rég.4xlarge / 20K iol
324,714 secs.

323,972 - P .
G 4 workers, ingesting bataches of 10,000
(312,555 / Finished gesting

285,998
300,000

Finished
after 702
secs.

265,782

Avg. Rows Ingested Per Second -
Partitioned

Avg. Rows Ingested Per Second -
Single

°
c
o
o
o
»n
I
o
a
°
Q
L
"
4]
oo
£
w
3
o
gb
<

——Linear (Avg. Rows Ingested Per
Second - Partitioned)

——Linear (Avg. Rows Ingested Per
Second - Single)

L) 209
g 000 0 g 000 0
” 00 > 00
Total Rows Inserted

aws
~—

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

aws
~—

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Any Question?

aws
~—

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

Domenico di Salvia

D« dssalvia@amazon.it Domenico di Salvia

. . H : H H i Sr. WW PostgreSQL SSA presso
@) https://www.linkedin.com/in/domenicodisalvia/ G W PostresQL SSA Rress

Credits:
Jim Mlodgenski - Sr. Principal Engineer RDS
Andy Katz — Sr. Mgr Aurora Open-Source Services

5 © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

