
© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Mastering Time-Series Data in PostgreSQL
Advanced Partitioning Strategies and
BRIN Indexes to Speed Up Ingestion

P G C O N F . U S N Y C 2 0 2 5

Domenico di Salvia (he/him)
Sr. WW SSA PostgreSQL, EMEA
Amazon Web Services

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Agenda
• The problem

• The nature of time-series data

• Benchmark scenario

• Improving with:

• ...the right data types
• ...the right indexes
• ...partitioning

• Q&A

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What’s the problem here?

Key Challenges: Common Scenarios:

• High write throughput

• Query performance

• Storage efficiency

• Maintenance overhead

• IoT sensor data

• Financial market data

• Application performance metrics

• Log aggregation systems

• Monitoring systems

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Single Table Problem

CREATE TABLE sensor_data (
 timestamp TIMESTAMPTZ,
 sensor_id INTEGER,
 value NUMERIC,
 metadata JSONB
);

Performance Impact:

• Index Bloat

• Vacuum operations

• Query planning

• Backup/restore

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The nature of time-series data

Few key characteristics:

1. Treated as an immutable
append-only log

2. Data is inserted in time
order

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Benchmark scenario

The benchmark simulates a fictional company that tracks metrics on its fleet of
trucks.

To simulate the ingestion of the metrics, the benchmark loads pre-generated
data using the PostgreSQL COPY command in parallel threads.

• Approximately 1 Year of Data

• 100 Trucks

• 586 million rows of data

• Data size of about 133GB

Credits: https://github.com/timescale/tsbs

https://github.com/timescale/tsbs

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Benchmark scenario continued

CREATE TABLE readings (
 time TIMESTAMPTZ,
 tags_id INTEGER,
 name TEXT,
 latitude DOUBLE PRECISION,
 longitude DOUBLE PRECISION,
 elevation DOUBLE PRECISION,
 velocity DOUBLE PRECISION,
 heading DOUBLE PRECISION,
 grade DOUBLE PRECISION,
 fuel_consumption DOUBLE PRECISION,
 additional_tags JSONB
);

CREATE INDEX readings_latitude_time_idx
ON readings
USING btree (latitude, time DESC);

CREATE INDEX readings_tags_id_time_idx
ON readings
USING btree (tags_id, time DESC);

CREATE INDEX readings_time_idx
ON readings
USING btree (time DESC);

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Benchmark scenario continued

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

First Ingestion Trial Results

• Amazon RDS for PostgreSQL db.r6g.2xlarge (Graviton2, 8 vCPU, 64 GiB
memory)

• Storage type io1 with 20k provisioned IOPS

• 4 parallel workers loading data (COPY)

Results:

• Load Time à 5,609 seconds (93.5 minutes)

• At a rate of 522,832 metrics per second

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

...by using the right Data Types

• ID column à SMALLINT?

• Metrics columns à from DOUBLE PRECISION to REAL

...maybe better INT (up to 2 billion of values)

ALTER TABLE readings
 ALTER COLUMN elevation TYPE REAL,
 ALTER COLUMN velocity TYPE REAL,
 ALTER COLUMN heading TYPE REAL,
 ALTER COLUMN grade TYPE REAL,
 ALTER COLUMN fuel_consumption TYPE REAL;

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Second Ingestion Trial

• Size of the database goes from 133GB to 126GB (-5.2%)

• Less storage and likely less CPU cycles needed

• More rows can be held in memory

Results:

• Load Time à 5,487 seconds (about 91 minutes)

• At a rate of 534,517 metrics per second

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

And even the order of the columns does matter...
• Group columns with similar data types together (integer, text, blob, ...)
• Put the fixed size columns first
• Put the most frequently used columns first
• Don’t use VARCHAR if you can make better choices (e.g., CHAR, INT, DATE,

TIMESTAMP, ...)

Benefits:
• Less disk space
• Better performances
• CPU and RAM used efficiently

Credits: Hans-Jürgen Schönig (PGConf.EU Berlin 2022)
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/

https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/
https://www.cybertec-postgresql.com/en/column-order-in-postgresql-does-matter/

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

...by using the right Index Types

• B-Tree (default index type)

• Hash

• GiST (Generalized Search Tree)

• SP-GiST (Space Partitioned GiST index)

• GIN (Generalized Inverted Index)

• BRIN (Block Range Index)

• bloom (extension)

à perfect for timeseries data...

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

BRIN (Block Range Index)
• It stores Min/Max values for a range

of data pages

• Uses less storage (order of magnitude)

• Tiny index designed to index large tables

• Supports equality and range queries,
supported operators: < <= = >= >

• Ideal for natural ordered table, examples:

• timestamps

• IoT sensor data

(1,’a’)

(2,’b’)

…

(50,’c’)

(51,’a’)

(52,’b’)

…

(100,’c’)

1-50

101-150

(101,’a’)

(102,’b’)

…

(150,’c’)

Index

Table

51-100

CREATE INDEX readings_time_brin_idx
 ON readings
 USING BRIN (time)
 WITH (pages_per_range = 32);

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Third Ingestion Trial

• Size of the database goes from 126GB to 101GB (-19.8%)

• The size of both BRIN indexes are only 24 KB in this scenario...

• ... meaning better performance for metrics ingestion

Results:

• Load Time à 4,761 seconds (about 79 minutes)

• At a rate of 616,002 metrics per second

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

But, what about read performances with BRIN?

EXPLAIN ANALYZE
 SELECT count(*)
 FROM readings
 WHERE time BETWEEN
 '2025-06-25'
 AND
 '2025-06-26';

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

But, what about read performances with BRIN?

EXPLAIN ANALYZE
 SELECT count(*)
 FROM readings
 WHERE time BETWEEN
 '2025-06-25'
 AND
 '2025-06-26';

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Additional considerations

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

...by implementing Partitioning

Declarative Partitioning introduced in PostgreSQL version 10

Benefits:

• Divide & Conquer

• Partition Pruning

• Parallel Maintenance and Data Retrieval

• Efficient Data Lifecycle

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Partitioning Strategies

Range Partitioning

Data is placed in partitions based on a range of values

List Partitioning

Data is placed in partitions based on a list of discrete values

Hash Partitioning

Data is placed in partitions based on a hash algorithm applied to a key

à perfect for timeseries data...

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Range Partitioning

• Not all partitions need to be
defined

• Can not have overlapping
ranges

• The special values MINVALUE
and MAXVALUE can be used to
indicate that there is no lower
or upper bound

• The value can not be NULL

CREATE TABLE sensor_data (
 timestamp TIMESTAMPTZ NOT NULL,
 sensor_id INTEGER,
 value NUMERIC,
 metadata JSONB)
PARTITION BY RANGE (timestamp);

CREATE TABLE sensor_data_y2025m09
PARTITION OF sensor_data
 FOR VALUES FROM ('2025-09-01')
 TO ('2025-10-01');

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Range Partitioning continued

pg_partman - https://github.com/pgpartman/pg_partman

pg_cron - https://github.com/citusdata/pg_cron

https://github.com/pgpartman/pg_partman
https://github.com/pgpartman/pg_partman
https://github.com/citusdata/pg_cron
https://github.com/citusdata/pg_cron

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fourth Ingestion Trial

• Size of the database is the same (101GB)

Results:

• Load Time à 1,774 seconds (about 29 minutes, -62.7%)

• At a rate of 1,653,024 metrics per second

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Results Summary

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Results Summary (continued)

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Results Summary (continued)

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Results Summary (continued)

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Demo

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Any Question?

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Domenico di Salvia
dssalvia@amazon.it
https://www.linkedin.com/in/domenicodisalvia/

Credits:
Jim Mlodgenski – Sr. Principal Engineer RDS
Andy Katz – Sr. Mgr Aurora Open-Source Services

